

Tele-sports and Tele-dance: Full-Body Network Interaction

Benjamin Schaeffer Hank Kaczmarski Lance Chong
Mark Flider Luc Vanier Yu Hasegawa-Johnson

Beckman Institute, University of Illinois at Urbana-Champaign

1-217-333-1527

{schaeffr, hank}@isl.uiuc.edu {l-cong, mflider, vanier}@uiuc.edu
yu@post.harvard.edu

ABSTRACT
Researchers have had great success using motion capture tools for
controlling avatars in virtual worlds. Another current of virtual
reality research has focused on building collaborative
environments connected by networks. The present paper
combines these tendencies to describe an open source software
system that uses motion capture tools as input devices for real-
time collaborative virtual environments. Important applications of
our system lie in the realm of simulating interactive, multi-
participant physical activities like sport and dance. Several
challenges and their respective solutions are outlined. First, we
describe the infrastructure necessary to handle full-body
articulated avatars as driven by motion capture equipment,
including calibration and avatar creation. Next, we outline the PC
cluster solution chosen to render our worlds, exploring methods
of data sharing and synchronization, both within the PC cluster
nodes and between different sites in the distributed system.
Finally, virtual sports require physics, and we describe the
simulation algorithms used.

Categories and Subject Descriptors
I.3.7 [Computer Graphics]: Three-Dimensional Graphics and
Realism – virtual reality

General Terms
Design, Human Factors, Management

Keywords
Immersive Virtual Environment, PC Cluster, networking, motion
capture

1. INTRODUCTION
This paper describes experiments in the integration of full-body
motion capture technology and systems for experiencing shared
virtual worlds, examining the new types of interaction this
combination facilitates. The last few years have seen an explosion
of high-end commercial motion capture tools, mostly aimed at
creating content for the entertainment industry. However, these
tools can also power real-time interactive experiences, thus
enabling teleimmersion and telecollaboration using a participant’s
entire body.

Figure 1. Fairy Sports: Two avatars play a game

Important new types of shared virtual worlds become possible
once a participant’s entire body is involved. Virtual sports,
mimicking the physical engagement of a real sporting event, can
be experienced. In addition, collaborative dance, among other
performing arts possibilities, can become a reality. With this
technology, a sports league with no physical court will become
practical. Participants will be able, by changing their avatar, to
interact with simulation-rich virtual worlds in ways impossible in
the physical world. For instance, a virtual basketball match could

even the odds between short and tall players by letting them drive
avatars of equal heights in the virtual arena.

A wide variety of shared virtual worlds exist. Real-time
interaction over distance is now common via text-based chatting,
first person shooter games, or massively multiplayer online role-
playing games. Successful research efforts have also explored
telecollaboration very thoroughly, be it in virtual prototyping for
engineering [17], collaborative science, as with high-end virtual
reality [33], or advanced immersive teleconferencing, as in the
National Tele-Immersion Initiative, some of whose research is
described in [8]. Other experiments in telecollaboration are also
worthy of note, such as EVL’s NICE [15], where geographically
dispersed children can work together to tend a virtual garden.

However, consumer forms of telepresence, like chat or
MMORPG’s, rely on mouse and keyboard as input devices, which
puts a significant experiential barrier between the user’s physical
space and the shared virtual space. Common virtual reality
interfaces, such as projection-based virtual environments [7], put
the user in an artificial space, but, usually, just two or three
sensors are used, not nearly enough to map the user’s entire body
into the virtual world.

The virtual reality community has, however, explored using
motion capture technology as an input device to drive avatars in
virtual environments. Early work focused on the mechanics of
driving the avatar from the motion capture data, examining such
methods as filtering noisy input and using physically-based avatar
models to shape the data [22]. Related research has created a
methodology for controlling an avatar, possibly of very different
proportions and features than the controlling actor [29]. Other
research efforts have explored using motion capture devices to let
a participant receive training in a physical skill, such as Tai Chi
[6]. In this particular case, the user wears an HMD and can see his
own avatar, as well as the computer-controlled avatar of a Tai Chi
master.

In addition, the arts community has embraced motion capture as a
tool capable of adding new modalities of expression to human
motion. Choreographers can clothe human motion data with
interesting geometries to create performances that would be
impossible to stage in the physical world. The Ghostcatching
installation is a striking early example of this methodology [16].
In addition, the Capacitor arts group has staged pieces that
combine computer video generated off-line from motion capture
data with a live performer [2]. Finally, a recent production of The
Tempest used motion capture technology to embody a live
performer in a computer-generated avatar, projected on a screen
on stage [25]. While these art pieces use motion capture in
exciting ways, they do not explore interactivity in a shared space,
which only exists mediated through a computer. Such artificial
spaces are the subject of the present work.

We describe two experiments that combine full-body motion
capture with teleimmersion in shared virtual spaces. Our
experiments differ from previous work in several ways. First of
all, we investigate having multiple participants in our spaces,
which involves merging previous research currents in avatar

control and collaborative virtual environments into a single
unified software system. Secondly, for reasons of economic
practicality, our approach depends heavily on using PC clusters
for rendering. This influences the design of the underlying
software system, presenting challenges in creating data sharing
mechanisms for use between the cluster nodes as well as between
remote sites. Furthermore, the large number of computers
involved in collaborative virtual environments based on PC
clusters requires a developed software infrastructure focused on
system management concerns like automatic launching of
software components, configuration of those components, and
managing the application over its time of use. Finally, a virtual
sports arena must include a physical simulation that uses data
from the players’ bodies to effect objects in the environment. We
include such a mechanism in our open source system.

The first experiment, Hummingbird, was an art performance
showing collaboration between a live dancer in Los Angeles and a
dancer in Illinois who was mapped into their shared world in real-
time using motion capture. The second experiment, Fairy Sports,
consisted of two performers, each fully motion captured and
executing a shared task, in this case passing an oddly-shaped ball
back and forth in a virtual arena. For this work, we used an optical
tracking system from Motion Analysis and the MotionStar
Wireless system form Ascension Technologies.

2. INTERACTIVE TECHNIQUES
Video conferencing is the most common form of
telecollaboration. Many tasks, such as document sharing or joint
steering of a running scientific simulation or visualization, can be
accomplished with video conferencing instead of inside a
collaborative virtual environment. For instance, suppose two
physically dispersed researchers wish to steer a complex
simulation. A GUI window with application steering controls,
another window displaying current application state, and a video
conferencing link suffice to enable meaningful collaboration.
Collaborative virtual environments become more necessary the
more physical the interaction between the participants needs to be.

We explored situations in which simple video transmission
between sites participating in the shared world would not suffice.
Motion capture data has a much lower data rate than video, easily
less than 1 Mbps for a single performer. By using it to drive an
avatar in a remote virtual world, one can achieve very high quality
images with little network usage. Also, since this data is really
just raw geometric information, the programmer can easily
repurpose it.

For instance, the Hummingbird piece focused on transformation
and evolution, something that would have been difficult or
impossible to achieve with video. To realize Hummingbird, the
performer needed to appear as different creatures, a larvae, a fairy,
and a machine, at different times. Because our system focuses on
obtaining and transmitting raw geometric information about the
participants, these transformations were easily achieved by
clothing the performer with different avatars at different points in
the piece.

Another limitation of video is that it decreases the ability of
participants to share the same virtual space. In Fairy Sports, for
example, the performers pushed a squishy torus animated with
real-time physics back and forth between one another. This kind
of task could not be done with video at all since it directly
involves the performers interacting in real-time within an active
virtual space. Video does not create the spatial information
needed for a simulation.

Figure 2. The immersive VR interface in Fairy Sports

In Fairy Sports, we experimented with different methods of
immersing the participant in the shared world. We used a
projection-based virtual environment with magnetic tracking and
stereo graphics for one of the participants. For the other, who was
on our optical motion capture stage, we tried non-stereo methods.
We found that one non-stereo view could not give the performer
enough information to play the game effectively, but two different
views of the shared world enabled participation in the task.

Figure 3. Optical mocap interface for Fairy Sports

Consider the player on the optical motion capture stage. The
cameras of the optical motion capture system need significant
unobstructed line of sight to the performer to be effective. This
condition, when combined with our small 20 foot by 30 foot
stage, made an immersive virtual environment utilizing surround
screens impractical. Consequently, only a limited, though still
significant, proportion of the performer’s field of view could be
covered by screens. Gaps existed to allow the motion capture

cameras to see the performer. As a result, projection from the
head position would induce blind spots. Furthermore, without
stereo video, the participant has no way to judge distance from
himself to the ball in the Fairy Sports game, hindering his ability
to hit it and lob it back to his partner. However, multiple views,
such as a side view and a behind view, can, in fact, give the
performer enough information to control his avatar and play the
game.

3. PC CLUSTER SPECIFICS
Both Hummingbird and Fairy Sports use standard PC’s for their
infrastructure. The PC platform has many desirable
characteristics, such as low cost, low weight, and easy
serviceability, when compared to proprietary Unix graphics
workstations. For Hummingbird, the existence of compact but
powerful PC’s was important as we had to ship several across
country to the performance site. In this experiment, the computers
in the distributed system formed an ad hoc cluster connected
through the Internet2. Its displays were located at geographically
dispersed locations, one in Los Angeles and one in Illinois, and
consequently did not have to be precisely synchronized.

On the other hand, in Fairy Sports, we used a 6-sided immersive
environment, the Beckman Cube [10], as one of the interfaces. In
this case, each wall had its graphics produced by a separate PC,
with all six images required to be perfectly synchronized. Some of
this synchronization followed from the data sharing mechanisms
built into the Syzygy library underlying the experiment, as
explained below. However, some hardware synchronization was
also needed. Since the Cube uses active stereo, the video signals
of the participating PC’s need to be genlocked together so that
their vertical retraces occur at the same time. Consequently, we
use graphics cards capable of accepting an external genlock
signal. In this way, active stereo across the cluster display is
possible.

4. CONTENT CREATION PIPELINE
The avatars used for this work were constructed from discrete
pieces, one piece per bone in the avatar skeleton. This geometry
was constructed in a modeling package and exported to OBJ
format, with each piece an OBJ group. We represented the
avatars’ motion with the common htr format, which expresses the
skeleton as a hierarchy of bones whose motion is given relative to
a base position. An htr file containing only the base position
information is created using a Motion Analysis plug-in for Maya.
This information then maps each OBJ group in the avatar OBJ to
a standard position, with the pivot point at the origin and pointing
along the positive y-axis.

The transformed individual pieces are then stored internally in a
scene graph, which mirrors the hierarchy of the skeleton. This
database has additional structure that allows three aspects of the
avatar animation to be independent of one another: the avatar’s
geometry, the stream of bone motion data, and the precise
positioning of markers on the performer. Using this feature,
avatars can easily be exchanged between performers or a single
performer can take on different avatars dynamically. It even
allows one to recover from different marker placement between

sessions. This flexibility comes from associating three additional
transform nodes to each bone.

Each piece of bone geometry has 4 transforms associated with it.
There are a post-transform node, which attaches to the pre-
transform node of the bones’ parent, and a transform node, which
stores the rotation of the bone relative to its parent, as normally
determined by the htr file, and is attached to the post-transform
node. There are also a pre-transform node attached to the
transform node and a local transform node, which is attached to
the pre-transform node and to which the geometry is directly
attached (Fig. 4).

The post-transform can be used to change the relative positioning
of a limb. The pre-transform can be used to change the scale of
the hierarchy going down or the base angle at which the limb
protrudes, and the local transform can be used to change the
relative orientation or scale of the limb without effecting the
hierarchy below it. We used a custom GUI to interactively clothe
the performers with their avatar (Fig. 5). The operator manipulates
the various bones as above on the GUI’s left side while watching
data stream in on the right. Note how a poor fit of avatar to
performer can be corrected using this tool.

Figure 4. Partial scene graph for the skeleton

As an interesting side effect, the same limb motion data can be
used to drive a distorted avatar. Using these methods, the limbs
could suddenly appear very large or very small, be placed
differently on the body, or even be angled differently than
normally (Fig. 5).

5. SOFTWARE ARCHITECTURE
Shared virtual experiences necessarily involve networking
software, which presents certain challenges in design and
implementation. Interestingly, much of the same infrastructure
applies to both cluster-based graphics and shared virtual worlds.
In either case, the information necessary to construct the scene
must be shared among the computers drawing the scene. A

protocol needs to be constructed for this, with a means of
encoding messages, and connections between the various
components need to be managed and configured. Significant code
reuse can occur between these problem domains.

Of course, these software types are not completely identical.
Collaborative graphics may need to accommodate situations of
much lower bandwidth and much higher latency than cluster-
based graphics. And, clearly, cluster-based graphics needs much
tighter synchronization, preferably frame-locked, than
collaborative graphics.

Figure 5. Clothing the performer: Uncalibrated, calibrated,
and distorted.

Work on using graphics clusters for visualization and for shared
virtual worlds has been intense in recent years. On the graphics
cluster side, WireGL [13], Chromium [14], and DGL [19], have
been used to display OpenGL applications on tiled walls
consisting of dozens of projectors (the goal being very high
resolution). On the shared virtual worlds side, Avocado developed
the idea of a shared scene graph for sharing virtual worlds
between users at multiple sites [31]. Similarly, Repo 3D explored
using a scene graph model for distributed graphics [20]. An open
source scene graph project, OpenSG, with clustering support, also
exists [32].

Furthermore, the various incarnations of the CAVERNsoft project
[18][24] have examined the requirements for creating an efficient
networking structure for shared virtual worlds, along the lines of a
distributed shared memory database with an additional UDP data
transfer path. Many other projects for shared virtual worlds exist,
notably NPSNET [21][4] and MASSIVE [11].

Syzygy, the software underlying our experiments, differs from
these projects in several ways. First of all, it is built to facilitate
both cluster-based graphics, where synchronization between the
displays is a priority, and teleimmersion, where latencies dictate
that displays cannot be tightly synchronized. Second, it includes
functionality specifically for facilitating the integration of real-
time full-body interaction data. Third, it integrates distributed
graphics code, systems management middleware, and input device
networking and management into a single coherent code base,
reducing overall software complexity.

Syzygy is built in a layered architecture, as described in [28]. At
the base layer, is a messaging system that allows the programmer
to define custom protocols for communications between the
software components. Also at the base layer is a set of network
client and server objects that provide connection management
functionality along with aid in processing messages. Above this
layer, are built the various service-specific objects, like input
event processors, input event servers, input event clients, network-
aware graphics databases, and systems management components.
Syzygy constructs its simulations from these pieces.

Other aspects of Syzygy are similar to well-known software
projects. For instance, the VRPN project lets programs connect to
their input devices over the network [30]. Syzygy also features a
networked input event protocol that lets applications treat
peripherals connected to remote computers as local input devices.
Furthermore, communication with the various components of the
distributed system and the configuration of those components is
the sort of middleware task that grid operating systems like
Globus [9] and Legion [12] are meant to accomplish. Like these
systems, Syzygy has an infrastructure that facilitates launching
and configuring distributed applications.

6. SYZYGY: GRAPHICS DATABASE
The visuals for these experiments build on the Syzygy graphics
database. This is a hierarchical scene graph with a C++ API and
has been described in-depth in [27]. Briefly, the application
contains a master copy of the database. A general-purpose
rendering program, szgrender, can connect over the network to
this copy, and when connection occurs, the database state is
transferred atomically. During a given frame, the application’s
graphics database logs changes that occur, and, when it is time for
the next frame, transfers the entire buffer of changes to the slave
databases. When the software is operating on a graphics cluster,
the consumption of the buffer of database changes and the
subsequent display of the new image is performed synchronously
across all cluster PC’s. Synchronization occurs over the network.

However, this tight synchronization is undesirable for
telecollaboration over long distance networks. Specifically, when
a slave database is ready to display the next frame, it notifies the
master database and waits for the master to send a message telling
it to swap buffers. Consequently, for tight database
synchronization, network ping time is an upper bound on frame
rate. On LANs, with ping times of under a millisecond, this effect
is unimportant. However, even a high-performance WAN can see
ping times of 40-60 ms on a transcontinental haul. Consequently,
to enable collaboration over long distances, the graphics database
objects must be able to operate using weaker synchronization

schemes. In such cases, the application simply sends a stream of
database update buffers to all connected databases.

The graphics database has two other features that prove vital for
the work described in this paper. By default, all connected
databases are drawn from the same camera position as the master
database, with view direction and frustum possibly determined by
screen location, as is normal in projection-based virtual reality.
However, telecollaboration requires slave databases for different
participants to be drawn from different viewpoints, and different
views can aid the user in reconstructing depth information and
other scene characteristics. Fairy Sports uses this feature, as
described below.

Figure 6. Systems diagram for Fairy Sports

Finally, it is critical for the various components to be able to join
and leave the distributed system dynamically. This facilitates
experimentation with the distributed system, as viewing nodes can
be added to and removed from the cluster while the system is
running. The ability to do this while maintaining tight frame-by-
frame synchronization is a unique feature of Syzygy [27]. In
addition to making experimentation with systems configuration
easier, cluster application fault tolerance is increased, a
characteristic that becomes more important as the total amount of
hardware involved in running the application increases. The
systems diagram for Fairy Sports (Fig. 6) shows how complex
such clustered applications can become.

7. SYZYGY: DISTRIBUTED SYSTEMS
Experiments in interactive techniques require an infrastructure for
handling input devices as well as graphics. In out case, input event

servers put event streams on the network, communicating with the
devices themselves via driver objects. Applications use generic
input event client objects to connect to the servers and read the
event streams. A network-based input event handling framework
is essential for the experiments in this paper since too many input
devices are involved to connect them to a single computer.

This feature is crucial to the success of projects like Fairy Sports
that involve multiple large-scale motion capture systems. For
instance, the motion capture device may only provide data output
to a particular OS platform but the application may need to run on
another OS. In this case, a network protocol for input events
allows an application client object to, in a platform independent
fashion, receive events from a server object running on an OS
platform capable of interfacing to the device. In our case, the
Motion Analysis motion capture system only has available an
interface to Windows systems but we want to run the Fairy Sports
application on Linux.

Another important software feature offered by Syzygy is
integrated messaging services. The szgserver program manages
the Syzygy distributed system [28]. All components of this system
connect to the szgserver, receiving configuration information
from it and using it to transfer messages from one component to
another. From the command line of any computer in the cluster,
one can send a message to any of the running Syzygy programs.
In our applications, the operator uses this method to dynamically
change camera angles in a running view of an experiment, as is
useful for video recording, or in changing application state. For
instance, in the Fairy Sports piece, the operator needs to drop the
ball from time to time, an action triggered by a Syzygy message.

Furthermore, in a distributed system, components need to be
configured. The szgserver maintains a central database of
configuration information for the various computers in the cluster.
It can also be used to monitor running components, see how they
are configured, kill them, and re-launch them. This activity can
take place from any network accessible node. Consequently,
during the run of a complex application like Fairy Sports,
involving over a dozen computers dispersed throughout a large
building, a single operator can monitor the health of the system,
making changes as needed.

8. PHYSICS
Sports and similar activities depend on physical interactions
between objects to operate. Consequently, the Fairy Sports
experiment requires a real-time simulation engine to allow the
avatars to interact with the ball. We use a simple physics engine,
VMAT, an abbreviation for Virtual Materials, for this purpose.
The engine uses point masses connected by springs to simulate
flexible objects. Polygonal skins supported by these spring
networks provide collision detection and response, as well as a
graphical representation of the object.

The ball in Fairy Sports is, in fact, a flexible torus. This shape was
chosen to allow interesting modalities of interaction, such as an
avatar putting its arm through the central hole. Because the torus
is flexible instead of rigid, its motion appears rubbery, with the
underlying spring network providing the simulated flexibility.

Figure 7. Simplified shadow geometry for the avatar

We now examine how the torus was constructed from springs.
First of all, its skin consists of a grid of point masses mapped to
its surface. Adjacent point masses are connected via springs.
Next, to inhibit buckling of the skin, each point mass has springs
connecting it to nonadjacent masses, these being located at
distances of both 2 and 3 elements in the skin’s grid. To reinforce
the object and prevent it from collapsing, a ring of point masses
occupies the torus’ interior. These interior masses are connected
via springs to nearby masses on the skin.

Figure 8. The ball in Fairy Sports: Spring network supporting
the torus’ skin

The objects in the VMAT engine use polygonal skins to detect
collisions with each other. The grid of point masses on the torus’
surface is covered, in the obvious way, by triangles. These
triangles are both drawn to give a graphical representation of the
torus (the Fairy Sports ball) and used by the physics engine to
detect collisions with other objects in the simulation. With the

avatars, on the other hand, a simple identification of triangles in
the avatars’ geometrical representations with collision detecting
triangles in the avatars’ physics representation is impossible. The
avatars are too geometrically complex, containing nearly 10,000
triangles.

Consequently, we do not use the avatars’ geometry in the
simulation but instead, for each avatar, construct a shadow
geometry consisting of axis-aligned bounding boxes attached to
each of the avatar’s segments. These bounding boxes are driven
by the avatar’s motion, and the triangles comprising them are used
for collision detection with the ball. By making this substitution,
we are able to run our simulation in real-time. Other researchers
have embedded complex geometry in a simplified physical
framework for the purposes of real-time simulation, notably [3].

We now briefly walk through the simulation’s inner loop. Each
time step of its evolution is divided into two parts. First, the
spring network underlying the ball is advanced using an ODE
solver. Next, collisions between its point masses and triangles
belonging to the avatars’ shadow geometry are assessed. To speed
up this process, the simulated space is evenly divided into a cubic
grid and only point-triangle pairs from nearby cells are tested for
collisions. Each triangle has a surface normal associated with it,
whose direction defines the inside and outside of the object. If a
point mass has passed through the triangle from its outside to its
inside, a collision has occurred. In this case, the point mass is
moved back along the normal so that it lies on the triangle’s
surface. Its velocity vector is also reflected along the normal.

We now attempt to give an idea of the simulation’s performance.
Each avatar has a collision skin built from 240 triangles, as
outlined above. The ball is comprised of 126 point masses, 1022
springs, and 224 collision triangles. On a 1 GHz Pentium 3
processor, each animation frame of Fairy Sports is computed in
about 24 milliseconds.

Figure 9. Photo from Hummingbird performance

9. HUMMINGBIRD: DETAILS
Our first experiment was an art piece, Hummingbird, performed
in October 2002 between a dancer in Illinois and a dancer in Los

Angeles. This performance, with its theme of metamorphosis,
exploited motion captured data’s advantages over video by
transforming the performer’s rendered avatar, in real-time, from
one form to another. It also highlighted another important aspect
of motion capture data: it is an excellent way to force high-quality
content through a thin pipe. Since the avatar geometry is only
transmitted once, and thereafter only the limb transformations
need to be transmitted, the bandwidth requirements are
significantly under 1 Mbps for a high-resolution animation,
obviously far superior to video.

The performance involved a motion-captured dancer in Illinois.
The motion capture data was transmitted to a local computer that
maintained the master copy of the graphics database and executed
the performance logic, which mainly consisted of transitioning the
avatar from form to form based on a preset timeline. The master
database was displayed on a projection screen in the motion
capture room, so that the performer could get feedback regarding
her actions in the virtual world.

A computer behind stage in Los Angles ran a slave graphics
database that mirrored the database in Illinois, but was not tightly
synchronized frame-by-frame to it. This computer projected video
onto a transparent screen behind which the live performer in Los
Angles danced. To give the performer in Illinois feedback
regarding the events on stage, a video camera was set up in LA
and streamed video back to Illinois, where it was displayed as a
transparent overlay on the animated avatar image.

10. FAIRY SPORTS: DETAILS
Our second experiment with these systems was Fairy Sports. In
this piece, two performers try to push a flexible torus, animated by
real-time physics, back and forth between one another. The
physics is such that any part of the avatar can interact with the
object. This simulated world made full use of the advantages in
interactivity afforded by using motion capture. The bodies of the
participants are projected fully into a shared virtual space, and
they are able to manipulate rapidly changing aspects of that space
in a cooperative fashion. Video conferencing cannot provide a
similar shared experience. An interesting application of this
technology would be in integrating multiple synthetic performers
into a scene for motion pictures or video games.

For this experiment, we used two motion capture stages. One was
a fully immersive virtual reality chamber equipped with a
MotionStar wireless system by Ascension Technologies and 10
magnetic sensors. On this stage, the performer was immersed in
the simulation using a projection-based virtual environment, as
pioneered by EVL [7]. This environment uses active stereo to give
a sense of depth, has 6 walls, one of which slides shut so that the
user can be fully surrounded (the screens are in a cube
configuration), and has its display images drawn from the user’s
head perspective (Fig. 2).

The other stage used the same Motion Analysis optical tracking
system as Hummingbird and Magic Mirror. While we did not
have the capability to display stereo video on the optical motion
capture stage, we nevertheless attempted to increase the
information offered to the performer there by building a new

screen configuration. Two large screens were built, sandwiching
the performer in a corridor-like space. The motion capture
cameras were rearranged so that they pointed directly into the
space from either side of the corridor. Each screen displayed the
same image. By mirroring the screens, we allowed the performer
to turn around and continue interacting, something that would
have been impossible with only a single display.

Figure 10. Still from Fairy Sports

We found that a single view was insufficient to give the performer
on the optical motion capture stage enough information about the
scene. Consequently, we used two computers, each displaying a
different view. By using these views together, the performer could
reconstruct the scene sufficiently to interact with the other avatar.

In the projection-based virtual environment, much more so than
on the optical capture stage, the performer manipulated her avatar
as if she was embodied in the space. The mechanics of virtual
environments accomplish that for us and, indeed, seem to make
the performer embodied in virtual reality more effective at playing
the game than the performer on the optical stage.

We now briefly discuss the software architecture for this
experiment. The application maintains the master graphics
database and runs the simulation of the flexible torus batted back
and forth between the performers. The PC on which the
application runs does not render graphics. Input client objects
embedded in the application connect across the network to input
servers that in turn connect to the various motion capture devices,
putting their data on the network.

There are, over all, 9 slave databases connected through the
building’s LAN to the application’s master database, each running
on a different computer (Fig. 6). Six of these are used to power
the projection-based virtual environment, one per wall. Another
two are used to provide the views for the performer on the optical
motion capture stage. A final computer is used to output video to
video tape to provide a record of the performance.
From a control console, the operator can monitor the state of the
distributed system. Messages can be sent to the application
causing a new to drop from the virtual sky. Camera angles on any
of the displaying slave databases can also be changed. This

allows, for instance, the operator to dynamically change camera
angles in the video tape based upon events in the virtual world.

11. CONCLUSION
By combining work in virtual reality and teleimmersion with
motion capture equipment, we are able to present participants
with an unprecedented level of interaction with a shared virtual
world. Full embodiment in a virtual world enables the completion
of tasks requiring whole body presence, like sports or other
games. The whole experience is strikingly realistic, both for the
participants and for observers watching the virtual world.

12. OBTAINING THE SOFTWARE
The VMAT physics library, the Syzygy clustering software, and
the infrastructure for our motion capture and telecollaboration
experiments can be freely downloaded from www.isl.uiuc.edu.
These libraries and applications are licensed under the GNU
LGPL.

13. ACKNOWLEDGEMENTS
The Hummingbird performance was supported by the Beckman
Institute of the University of Illinois and by the Kyoto Computer
Gakuin. The 6-sided immersive virtual environment mentioned
here was supported by NSF Major Research Instrumentation
Grant EIA-0079800.

14. REFERENCES
[1] Bierbaum, A., Just, C., Hartling, P., Meinert, K., Baker, A.,

and Cruz-Neira, C. 2001. VR Juggler: a virtual platform for
virtual reality application development. In Proc. IEEE
Virtual Reality 2001, 89-96.

[2] Capacitor. 2002. http://www.capacitor.org.

[3] Capell, S., Green, S., Curless, B., Duchamp, T., Popovic, Z.
2002. Interactive Skeleton-Driven Dynamic Deformations.
ACM Trans. Graphics 21, 3, 586-593.

[4] Capps, M., McGregor, D., Brutzman, D., and Zyda, M. 2000.
NPSNET-V: A New Beginning for Dynamically Extensible
Virtual Environments, IEEE Computer Graphics and
Applications, 20, 5, 12-15.

[5] Chen, Y., Chen, H., Clark, D., Liu, Z., Wallace, G. and Li.,
K. 2001. Software environments for cluster-based display
systems. http://www.cs.princeton.edu/omnimedia/papers/ccgrid.pdf.

[6] Chua, P., Crivella, R., Daly, B., Hu, N., Schaaf, R., Ventura,
D., Camill, T., Hodgins, J., and Pausch, R. 2003. Training for
Physical Tasks in Virtual Environments, In Proc. IEEE
Virtual Reality 2003. 87-94.

[7] Cruz-Neira, C., Sandin, D., and DeFanti, T. 1993. Surround-
screen projection-based virtual reality: the design and
implementation of the CAVE. In Proc. ACM SIGGRAPH
1993, ACM Press / ACM SIGGRAPH, 135-142.

[8] Daniilidis, K., Mulligan, J., McKendall, R., Kamberova, G.,
Schmid, D., and Bajcsy, R. 2000. Real-time 3D Tele-
immersion, In The Confluence of Vision and Graphics, A.
Leonardis et al. (Ed.), Kluwer.

[9] Foster, I. and Kesselman, C. 1997. Globus: a
metacomputing infrastructure toolkit, Intl. J. Supercomputer
Applications 11, 2, 115-128.

[10] Francis, G., Goudeseune, C., Kaczmarski, H., Schaeffer, B.,
and Sullivan, M. 2003. ALICE on the Eightfold Way:
Exploring Curved Spaces in an Enclosed Virtual Reality
Theatre, Visualization and Mathematics III, H.-C. Hege and
K. Polthier, eds, Springer.

[11] Greenhalgh, C., Purbrick, J., and Snowdon, D. 2000. Inside
MASSIVE-3: Flexible Support for Data Consistency and
World Structuring, In Proc. CVE 2000.

[12] Grimshaw, A. and Wulf, W. 1997. The Legion vision of a
worldwide virtual computer, Comm. ACM 40, 1, 39-45.

[13] Humphreys, G., Eldridge, M., Buck, I., Stoll, G., Everett, M.,
and Hanrahan, P. 2001. WireGL: a scalable graphics system
for clusters. In Proc. ACM SIGGRAPH 2001, ACM Press /
ACM SIGGRAPH, 129-140.

[14] Humphreys, G., Houston, M., Ng, R., Frank, R., Ahern, S.,
Kirchner, P., and Klosowski, J. 2002. Chromium: a stream-
processing framework for interactive rendering on clusters.
ACM Trans. Graphics 21, 3, 693-702.

[15] Johnson, A., Roussos, M., Leigh, J., Barnes, C., and
Vasilakis. C. 1998. The NICE Project: Learning Together in
a Virtual World, In Proc. IEEE VRAIS, 176-183.

[16] Jones, B., Kaiser, P., and Eshkar, S. 1999. Ghostcatching.
http://www.cooper.edu/art/ghostcatching.

[17] Lehner, V. D. and DeFanti, T. A. 1997. Distributed Virtual
Reality: Supporting Remote Collaboration in Vehicle
Design. IEEE Computer Graphics and Applications, 17, 2,
13-17.

[18] Leigh, J., Johnson, A., and DeFanti, T. 1997. CAVERN: A
Distributed Architecture for Supporting Scalable Persistence
and Interoperability in Collaborative Virtual Environments,
Journal of Virtual Reality Research, Development, and
Applications, 2, 2, 217-237.

[19] Li, K., Chen, H., Chen, Y., Clark, D.W., Cook, P.,
Damianakis, S., Essl, G., Finkelstein, A., Funkhouser, T.,
Klein, A., Liu, Z., Praun, E., Samanta, R., Shedd, B., Singh,
J.P., Tzanetakis, G., and Zheng, J. 2000. Early experiences
and challenges in building and using a scalable display wall
system, IEEE Computer Graphics and Applications 20, 4,
671-680.

[20] MacIntyre, B. and Feiner, S. 1998. A distributed 3D
graphics library. In Proc. ACM SIGGRAPH 1998, ACM
Press / ACM SIGGRAPH, 361-370.

[21] Macedonia, M., Zyda, M., Pratt, D., Barham, P., and
Zeswitz, S. 1994. NPSNET : A Network Software
Acrhitecture for Large-Scale Virtual Environments,
Presence, 3, 4, 265-287.

[22] Molet, T., Boulic, R., and Thalmann, D. 1996. A Real-Time
Anatomical Converter for Human Motion Capture, In Proc.
7th Eurographics Workshop on Animation and Simulation,
Wein.

[23] Olson, E. 2002. Cluster Juggler – PC Cluster Virtual
Reality. M.Sc. thesis, Iowa State University.

[24] Park, K., Cho, Y., Krishnaprasad, N., Scharver, C., Lewis,
M., Leigh, J., and Johnson, A. 2000. CAVERNsoft G2 : A
Toolkit for High Performance Tele-Immersive Collaboration,
In Proc. ACM Symposium on Virtual Reality Software and
Technology 2000, 8-15.

[25] Saltz, D. 2001. The Collaborative Subject: Telerobotic
Performance and Identity, Performance Research, 6, 4, 70-
83.

[26] van der Schaaf, T., Spoelder, H., Renambot, L., Germans, D.,
and Bal, H. 2002. Retained mode parallel rendering for
scalable tiled displays. In Proc. Seventh Immersive
Projection Technology Symposium. Orlando.

[27] Schaeffr, B. 2002. Networking and Management
Frameworks for Cluster-based Graphics, In Virtual
Environment on a PC Workshop, Protvino, Russia.

[28] Schaeffer, B. and Goudeseune, C. 2003. Syzygy: Native PC
Cluster VR, In Proc. IEEE Virtual Reality 2003. 15-22.

[29] Shin, H., Lee, J., Shin, S., and Gleicher, M. 2001. Computer
Puppetry: An Importance-Based Approach, ACM
Transactions on Graphics, 20, 2, 67-94.

[30] Taylor, R., Hudson, T., Seeger, A., Weber, H., Juliano, J.,
and Helser, A. 2001. VRPN: a device-independent, network-
transparent VR peripheral system, In Proc. ACM Symposium
on Virtual Reality Software and Technology 2001, 55-61.

[31] Tramberend, H. 1999. Avocado: a distributed virtual reality
framework. In Proc. IEEE Virtual Reality 1999, 14-21.

[32] Voβ, G., Behr, J., Reiners, D., and Roth, M. 2002. A multi-
thread safe foundation for scenegraphs and its extension to
clusters. In Proc. Fourth Eurographics Workshop on
Parallel Graphics and Visualization. Blaubeuren, Germany.

[33] Wheless, G., Lascara, C., Valle-Levinson, A., Brutzman, D.,
Sherman, W., Hibbard, W., and Paul, B. 1996. Virtual
Chesapeake Bay: Interacting with a coupled
physical/biological model, IEEE Computer Graphics and
Applications, 16, 4, 42-43.

	Tele-sports and Tele-dance: Full-Body Network Interaction
	1. INTRODUCTION
	Figure 1. Fairy Sports: Two avatars play a game
	2. INTERACTIVE TECHNIQUES

	Figure 3. Optical mocap interface for Fairy Sports
	3. PC CLUSTER SPECIFICS
	4. CONTENT CREATION PIPELINE
	5. SOFTWARE ARCHITECTURE
	6. SYZYGY: GRAPHICS DATABASE

	Figure 6. Systems diagram for Fairy Sports
	7. SYZYGY: DISTRIBUTED SYSTEMS
	9. HUMMINGBIRD: DETAILS
	10. FAIRY SPORTS: DETAILS

	Figure 10. Still from Fairy Sports
	11. CONCLUSION
	13. ACKNOWLEDGEMENTS

